
The Australian National University
Final Examination – November 2019

Comp2310 & Comp6310
Systems, Networks and Concurrency

 Study period: 15 minutes
 Writing time: 3 hours (after study period)
 Total marks: 100
 Permitted materials: None

Questions are not equally weighted – sizes of answer boxes do not nec-
essarily relate to the number of marks given for this question.

All your answers must be written in the boxes provided in this booklet. You will be provided with scrap paper
for working, but only those answers written in this booklet will be marked. Do not remove this booklet from the
examination room. There is additional space at the end of the booklet in case the boxes provided are insufficient.
Label any answer you write at the end of the booklet with the number of the question it refers to (and also note
inside the original answer box that your answer is continued at the end of the booklet).

Greater marks will be awarded for answers that are simple, short and concrete than for answers of a sketchy and
rambling nature. Marks will be lost for giving information that is irrelevant to a question.

Student number:

The following are for use by the examiners

Q1 mark Q2 mark Q3 mark Q4 mark Q5 mark Q6 mark

Total mark

Comp2310 & Comp6310 Final Exam 2019 Page 2 of 19

1. [16 marks] General Concurrency

(a) [6 marks] Which of the following statements are correct? Tick all correct statements –
marks will be subtracted for wrongly ticked statements, so do not just tick all of them.
If you find a statement to be incorrect, then provide a corrected version of that state-
ment in the answer box underneath by replacing only the italics part of the statement.

☐ All concurrent programming languages are capable of providing errors or warn-
ings with respect to synchronization operations.

☐ Message passing is an operation between an active entity (task) and a passive entity
(for example a shared function).

☐ Message passing is often considered a safer alternative to shared memory based
communication forms as information is usually copied instead of shared.

☐ Deadlock prevention limits the scope of problems which can be solved.

☐ If all four necessary deadlock conditions are fulfilled, then a deadlock can possibly be
avoided.

Comp2310 & Comp6310 Final Exam 2019 Page 3 of 19

☐ An simple assignment statement (for example between two integer variables) in a
concurrent programming language is atomic.

☐ Any code section in a concurrent programming language can be made to be atomic.

☐ Concurrent programs require parallel hardware.

☐ Hyper-threading is implemented by replicating a processor’s arithmetic logic unit.

☐ Vector processing is implemented by replicating a processor’s registers.

☐ An implicitly concurrent program is executed concurrently, and without any chance of
deadlocks.

☐ An implicitly concurrent program is free of any blocking.

Comp2310 & Comp6310 Final Exam 2019 Page 4 of 19

(b) [6 marks] How do the following hardware architecture concepts relate to concurrent
programming (if at all)?

 Pipelines, Vector processors, Hyper-threading,
Out of order execution, Multiple cores, Virtual memory

Give precise reasons for your answers.

Pipelines:

Vector processors:

Hyper-threading:

Out of order execution:

Multiple cores:

Virtual memory:

Comp2310 & Comp6310 Final Exam 2019 Page 5 of 19

(c) [4 marks] Name four concurrent programming language primitives (syntactical con-
structs which are understood by the compiler) which can or will lead to concurrently
executing code. Explain for all four primitives, why they (potentially) result in concur-
rent code.

Comp2310 & Comp6310 Final Exam 2019 Page 6 of 19

2. [16 marks] Synchronization and Communication

(a) [10 marks] Make a suggestion for a new, concurrent programming language (or an
amendment to an existing programming language), which cannot express a potentially
deadlocking program (while of course still providing the benefits of concurrent pro-
gramming in general). Give precise reasons for your choices and why your choices will
make it impossible to write a deadlocking program.

Comp2310 & Comp6310 Final Exam 2019 Page 7 of 19

(b) [6 marks] Write a program in any programming language of your choice (including
pseudo code) which implements a race condition. Yes, this is commonly considered a
bad thing, so you are asked in this question to provide an example of bad program-
ming.

Comp2310 & Comp6310 Final Exam 2019 Page 8 of 19

3. [22 marks] Message Passing

(a) [9 marks] Read the following Ada code carefully. The tasks and the calling code section
are syntactically correct and will compile without warnings.

 task Selector is
 entry Start;
 entry E1;
 entry E2;
 end Selector;

with three different versions for its body (all delay values are in seconds):

Add the outputs for all three versions to the time lines below (assume
that Start is called at time zero and you have unlimited CPU capacity)

1 2 3 4 5 6 7 8 90[seconds]

Version 1:

Version 2:

Version 3:

10

Version 1:

task body Selector is

 begin
 accept Start;

 loop
 select
 accept E1 do
 delay 1.0;
 Put (‘X’);
 end E1;
 or
 accept E2 do
 delay 1.0;
 Put (‘Y’);
 delay 1.0;
 end E2;
 or
 terminate;
 end select;

 delay 2.0;
 Put (‘Z’);
 end loop;

 end Selector;

Version 2:

task body Selector is

 begin
 accept Start;

 loop
 select
 accept E1 do
 delay 1.0;
 Put (‘X’);
 end E1;
 or
 delay 2.0;
 accept E2;
 Put (‘Y’);
 exit;
 end select;

 delay 2.0;
 Put (‘Z’);
 end loop;

 end Selector;

Version 3:

task body Selector is

 begin
 accept Start;

 loop
 delay 2.0;
 select
 accept E1 do
 Put (‘X’);
 end E1;
 else
 accept E2;
 Put (‘Y’);
 exit;
 end select;

 delay 2.0;
 Put (‘Z’);
 end loop;

 end Selector;

Called by this
code section:
Selector.Start;
delay 1.0;
Selector.E1;
delay 1.0;
Put (‘A’);
delay 1.0;
select
 Selector.E2;
 Put (‘B’);
else
 delay 1.0;
 Put (‘C’);
end select;
delay 1.0;
Put (‘D’);

Comp2310 & Comp6310 Final Exam 2019 Page 9 of 19

(b) [13 marks] Read the following Ada program carefully. The whole program is syntacti-
cally correct and will compile without warnings. See questions on the following pages.

with Ada.Text_IO; use Ada.Text_IO;

procedure Working_Class is

 type Workers_Range is range 1 .. 2;
 type Clients_Range is range 1 .. 3;

 task type Worker is
 entry Set_Id (Provided_Id : Workers_Range);
 entry Service;
 end Worker;

 task type Client;

 Workers : array (Workers_Range) of Worker;
 Clients : array (Clients_Range) of Client; pragma Unreferenced (Clients);

 task Server is
 entry Check_In (Id : Workers_Range);
 entry Service;
 private
 entry Backlog;
 end Server;

 task body Worker is

 Id : Workers_Range := Workers_Range’Invalid_Value;

 begin
 accept Set_Id (Provided_Id : Workers_Range) do
 Id := Provided_Id;
 end Set_Id;
 loop
 select
 accept Service do
 delay 1.0;
 Put (‘W’); --> Output!
 delay 1.0;
 end Service;
 or
 terminate;
 end select;
 Server.Check_In (Id);
 end loop;
 end Worker;

 task body Client is

 begin
 Server.Service;
 Put (‘A’); --> Output!
 Server.Service;
 Put (‘B’); --> Output!
 end Client;
 -- (continued on next page ..)

Comp2310 & Comp6310 Final Exam 2019 Page 10 of 19

 task body Server is

 type Workers_State is (Busy, Idle);

 States : array (Workers_Range) of Workers_State := (others => Idle);

 begin
 loop
 select
 accept Check_In (Id : Workers_Range) do
 States (Id) := Idle;
 end Check_In;
 or
 accept Service do
 for i in Workers_Range loop
 if States (i) = Idle then
 States (i) := Busy;
 requeue Workers (i).Service;
 end if;
 end loop;
 Put (‘X’); --> Output!
 requeue Backlog;
 end Service;
 or when (for some s of States => s = Idle) =>
 accept Backlog do
 Put (‘Y’); --> Output!
 requeue Service;
 end Backlog;
 or
 terminate;
 end select;
 end loop;
 end Server;

begin
 for w in Workers_Range loop
 Workers (w).Set_Id (w);
 end loop;
end Working_Class;

The pragma Unreferenced prevents a compiler warning which would point out that
Clients is not referenced in this program.

(i) [3 marks] In the program above mark all message sending statements, all requeuing
statements and all extended rendezvous blocks. Provide a legend in the answer box
below to indicate how you marked the three different kinds of code sections.

Comp2310 & Comp6310 Final Exam 2019 Page 11 of 19

(ii) [4 marks] Will the tasks in this program always, sometimes or never terminate?
Give precise reasons for your answer. This could for example be a specific case where
some tasks are blocked forever, or an explanation why every message will eventually
be accepted and every extended rendezvous will eventually be completed.

(iii) [6 marks] On the following time-line(s), provide the output which you expect from
each task in this program. If the output is non-deterministic, then also describe a sec-
ond, structurally different possibility (not just a permutation of indices). Consider zero
seconds to be the start-time of the program.

1 2 3 4 5 6 7 8 90

Clients (1)

Clients (2)

[seconds]

Clients (3)

Server

Workers (1)

Workers (2)

10

1 2 3 4 5 6 7 8 90

Clients (1)

Clients (2)

[seconds]

Clients (3)

Server

Workers (1)

Workers (2)

10

Comp2310 & Comp6310 Final Exam 2019 Page 12 of 19

4. [9 marks] Scheduling

(a) [3 marks] What is preemptive scheduling and for what reasons is it commonly used?

(b) [3 marks] Which scheduling algorithm would you suggest in order to minimize the
maximum turnaround time for a task set of unknown characteristics (especially: you do
not know the computation times). Give precise reasons.

(c) [3 marks] If you know the exact computation times of all tasks in a task set, would you
change to a different scheduling algorithm in question (b) (while still minimizing the
maximum turnaround time)? If so: to which other scheduling algorithm? Give precise
reasons.

Comp2310 & Comp6310 Final Exam 2019 Page 13 of 19

5. [8 marks] Data Parallelism

Write a program to implement the discrete cross-correlation function (as a discrete ar-
ray) between two cyclic, discrete functions (which are themselves represented by dis-
crete arrays) which optimizes for performance on an 8-core CPU with vector process-
ing units (processing 8 16-bit integer numbers per vector operation):

_ ,Cross Correlation A B A Bk i i k
i

$= +^ ^h h/

Sequentially such a function could be implemented like this:

 subtype Input_Range is Integer range -(2**15) .. +(2**15 - 1);
 subtype Output_Range is Integer range -(2**31) .. +(2**31 - 1);

 type Samples is mod 2**16;

 type Input_Function is array (Samples) of Input_Range;
 type Output_Function is array (Samples) of Output_Range;

 function Cross_Correlation (A, B : Input_Function) return Output_Function is

 CC : Output_Function := (others => 0);

 begin
 for k in Samples loop
 for i in Samples loop
 CC (k) := CC (k) + A (i) * B (i + k);
 end loop;
 end loop;
 return CC;
 end Cross_Correlation;

Use any programming language of your choice (including pseudocode). State what you
assume about your compiler.

Comp2310 & Comp6310 Final Exam 2019 Page 14 of 19

6. [29 marks] Distributed Systems & Architectures

(a) [8 marks] Transactions

(i) [3 marks] Transactions are said to fulfil the ACID properties. One of those proper-
ties is often not strictly followed, when the overall performance of a system is impor-
tant. Which property would that be and why does its violation allow for a potentially
higher performing system?

(ii) [5 marks] Executing transactions concurrently, does require some analysis of their
potential interferences. Suggest at least one way how one can guarantee that the con-
current execution of transactions will not leave a system in an inconsistent state. Give
precise reasons for your answer.

Comp2310 & Comp6310 Final Exam 2019 Page 15 of 19

(b) [6 marks] Enumerate and describe the OSI network layers which need to be imple-
mented in a network router.

(c) [3 marks] Explain why it is practically impossible to record a global snapshot of most
distributed system at a specific global time. Give precise reasons.

(d) [4 marks] What kind of global snapshot is practically achievable for most distributed
systems? Explain briefly how you can acquire such a snapshot.

Comp2310 & Comp6310 Final Exam 2019 Page 16 of 19

(e) [8 marks] Write a program in any programming language of your choice (including
pseudo code) which implements distributed mutual exclusion in an effective and ef-
ficient way.

continuation of answer to question part

continuation of answer to question part

Student number:..

Comp2310 & Comp6310 Final Exam 2019 Page 17 of 19

continuation of answer to question part

continuation of answer to question part

Student number:..

Comp2310 & Comp6310 Final Exam 2019 Page 18 of 19

continuation of answer to question part

continuation of answer to question part

Student number:..

Comp2310 & Comp6310 Final Exam 2019 Page 19 of 19

	Student number:
	Q1 mark:
	Q2 mark:
	Q3 mark:
	Q4 mark:
	Q5 mark:
	Q6 mark:
	Total mark:
	All concurrent programming languages are capable of providing errors or warn: Off
	ings with respect to synchronization operations:
	Message passing is an operation between an active entity task and a passive entity: Off
	for example a shared function:
	Message passing is often considered a safer alternative to shared memory based: Off
	communication forms as information is usually copied instead of shared:
	undefined: Off
	Deadlock prevention limits the scope of problems which can be solved:
	If all four necessary deadlock conditions are fulfilled then a deadlock can possibly be: Off
	avoided:
	An simple assignment statement for example between two integer variables in a: Off
	concurrent programming language is atomic:
	undefined_2: Off
	Any code section in a concurrent programming language can be made to be atomic:
	undefined_3: Off
	Concurrent programs require parallel hardware:
	undefined_4: Off
	Hyperthreading is implemented by replicating a processors arithmetic logic unit:
	undefined_5: Off
	Vector processing is implemented by replicating a processors registers:
	An implicitly concurrent program is executed concurrently and without any chance of: Off
	deadlocks:
	undefined_6: Off
	An implicitly concurrent program is free of any blocking:
	Pipelines Vector processors Hyperthreading Out of order execution Multiple cores Virtual memory:
	rent code:
	make it impossible to write a deadlocking program:
	ming:
	that Start is called at time zero and you have unlimited CPU capacity:
	Version 1:
	Version 2:
	below to indicate how you marked the three different kinds of code sections:
	be accepted and every extended rendezvous will eventually be completed:
	Clients 1:
	Clients 2:
	Clients 3:
	Workers 1:
	undefined_8:
	Workers 2:
	Clients 1_2:
	Clients 2_2:
	Clients 3_2:
	Workers 1_2:
	undefined_10:
	Workers 2_2:
	a 3 marks What is preemptive scheduling and for what reasons is it commonly used:
	not know the computation times Give precise reasons:
	reasons:
	assume about your compiler:
	higher performing system:
	precise reasons for your answer:
	mented in a network router:
	distributed system at a specific global time Give precise reasons:
	systems Explain briefly how you can acquire such a snapshot:
	ficient way:
	continuation of answer to question part:
	continuation of answer to question:
	part:
	continuation of answer to question part_2:
	continuation of answer to question_2:
	part_2:
	continuation of answer to question part_3:
	continuation of answer to question_3:
	part_3:
	continuation of answer to question part_4:
	continuation of answer to question_4:
	part_4:
	continuation of answer to question part_5:
	continuation of answer to question_5:
	part_5:
	continuation of answer to question part_6:
	continuation of answer to question_6:
	part_6:

