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1. [16 marks] General Concurrency

(a) [6 marks] Which of the following statements are correct? Tick all correct statements – 
marks will be subtracted for wrongly ticked statements, so do not just tick all of them. 
If you find a statement to be incorrect, then provide a corrected version of that state-
ment in the answer box underneath by replacing only the italics part of the statement.

☐ All concurrent programming languages are capable of providing errors or warn-
ings with respect to synchronization operations.

☐ Message passing is an operation between an active entity (task) and a passive entity 
(for example a shared function).

☐ Message passing is often considered a safer alternative to shared memory based 
communication forms as information is usually copied instead of shared.

☐ Deadlock prevention limits the scope of problems which can be solved.

☐ If all four necessary deadlock conditions are fulfilled, then a deadlock can possibly be 
avoided.
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☐ An simple assignment statement (for example between two integer variables) in a 
concurrent programming language is atomic.

☐ Any code section in a concurrent programming language can be made to be atomic.

☐ Concurrent programs require parallel hardware.

☐ Hyper-threading is implemented by replicating a processor’s arithmetic logic unit.

☐ Vector processing is implemented by replicating a processor’s registers.

☐ An implicitly concurrent program is executed concurrently, and without any chance of 
deadlocks. 

☐ An implicitly concurrent program is free of any blocking.
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(b) [6 marks] How do the following hardware architecture concepts relate to concurrent 
programming (if at all)?

 Pipelines, Vector processors, Hyper-threading,  
Out of order execution, Multiple cores, Virtual memory

Give precise reasons for your answers.

Pipelines:

Vector processors:

Hyper-threading:

 
Out of order execution:

Multiple cores:

Virtual memory:
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(c) [4 marks] Name four concurrent programming language primitives (syntactical con-
structs which are understood by the compiler) which can or will lead to concurrently 
executing code. Explain for all four primitives, why they (potentially) result in concur-
rent code.
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2. [16 marks] Synchronization and Communication

(a) [10 marks] Make a suggestion for a new, concurrent programming language (or an 
amendment to an existing programming language), which cannot express a potentially 
deadlocking program (while of course still providing the benefits of concurrent pro-
gramming in general). Give precise reasons for your choices and why your choices will 
make it impossible to write a deadlocking program.
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(b) [6 marks] Write a program in any programming language of your choice (including 
pseudo code) which implements a race condition. Yes, this is commonly considered a 
bad thing, so you are asked in this question to provide an example of bad program-
ming.
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3. [22 marks] Message Passing

(a) [9 marks] Read the following Ada code carefully. The tasks and the calling code section 
are syntactically correct and will compile without warnings.

  task Selector is 
      entry Start;
      entry E1;
      entry E2;
   end Selector;

with three different versions for its body (all delay values are in seconds):

Add the outputs for all three versions to the time lines below (assume 
that Start is called at time zero and you have unlimited CPU capacity)

1 2 3 4 5 6 7 8 90[seconds]

Version 1:

Version 2:

Version 3:

10

Version 1:

task body Selector is

   begin
      accept Start;

      loop
         select
            accept E1 do
               delay 1.0;
               Put (‘X’);
            end E1;
         or
            accept E2 do
               delay 1.0; 
               Put (‘Y’);
               delay 1.0; 
            end E2;
         or
            terminate;
         end select;

         delay 2.0;
         Put (‘Z’);
      end loop;

   end Selector;

Version 2:

task body Selector is

   begin
      accept Start;

      loop
         select
            accept E1 do
               delay 1.0;
               Put (‘X’);
            end E1;
         or
            delay 2.0;
            accept E2;
            Put (‘Y’);
            exit;
         end select;

         delay 2.0;
         Put (‘Z’);
      end loop;

   end Selector;

Version 3:

task body Selector is

   begin
      accept Start;

      loop
         delay 2.0;
         select
            accept E1 do
               Put (‘X’);
            end E1;
         else
            accept E2;
            Put (‘Y’);
            exit;
         end select;

         delay 2.0;
         Put (‘Z’);
      end loop;

   end Selector;

Called  by this 
code section:  
Selector.Start;
delay 1.0;
Selector.E1;
delay 1.0;
Put (‘A’);
delay 1.0;
select
   Selector.E2;
   Put (‘B’);
else
   delay 1.0;
   Put (‘C’);
end select;
delay 1.0;
Put (‘D’);
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(b) [13 marks] Read the following Ada program carefully. The whole program is syntacti-
cally correct and will compile without warnings. See questions on the following pages.

with Ada.Text_IO; use Ada.Text_IO;

procedure Working_Class is

   type Workers_Range is range 1 .. 2;
   type Clients_Range is range 1 .. 3;

   task type Worker is
      entry Set_Id (Provided_Id : Workers_Range);
      entry Service;
   end Worker;

  task type Client;

   Workers : array (Workers_Range) of Worker;
   Clients : array (Clients_Range) of Client; pragma Unreferenced (Clients);

   task Server is
      entry Check_In (Id : Workers_Range);
      entry Service;
   private
      entry Backlog;
   end Server;

   task body Worker is

      Id : Workers_Range := Workers_Range’Invalid_Value;

   begin
      accept Set_Id (Provided_Id : Workers_Range) do
         Id := Provided_Id;
      end Set_Id;
      loop
         select
            accept Service do
               delay 1.0;
               Put (‘W’); --> Output!
               delay 1.0;
            end Service;
         or
            terminate;
         end select;
         Server.Check_In (Id);
      end loop;
   end Worker;

  task body Client is

   begin
      Server.Service;
      Put (‘A’); --> Output!
      Server.Service;
      Put (‘B’); --> Output!
   end Client;
                                                              --  (continued on next page ..)
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   task body Server is

      type Workers_State is (Busy, Idle);

      States : array (Workers_Range) of Workers_State := (others => Idle);

   begin
      loop
         select
            accept Check_In (Id : Workers_Range) do
               States (Id) := Idle;
            end Check_In;
         or
            accept Service do
               for i in Workers_Range loop
                  if States (i) = Idle then
                     States (i) := Busy;
                     requeue Workers (i).Service;
                  end if;
               end loop;
               Put (‘X’); --> Output!
               requeue Backlog;
            end Service;
         or when (for some s of States => s = Idle) =>
               accept Backlog  do
                  Put (‘Y’); --> Output!
                  requeue Service;
               end Backlog;
         or
            terminate;
         end select;
      end loop;
   end Server;

begin
   for w in Workers_Range loop
      Workers (w).Set_Id (w);
   end loop;
end Working_Class;

The pragma Unreferenced prevents a compiler warning which would point out that 
Clients is not referenced in this program.

(i) [3 marks] In the program above mark all message sending statements, all requeuing 
statements and all extended rendezvous blocks. Provide a legend in the answer box 
below to indicate how you marked the three different kinds of code sections.
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(ii) [4 marks] Will the tasks in this program always, sometimes or never terminate?
Give precise reasons for your answer. This could for example be a specific case where
some tasks are blocked forever, or an explanation why every message will eventually
be accepted and every extended rendezvous will eventually be completed.

(iii) [6 marks] On the following time-line(s), provide the output which you expect from
each task in this program. If the output is non-deterministic, then also describe a sec-
ond, structurally different possibility (not just a permutation of indices). Consider zero
seconds to be the start-time of the program.

1 2 3 4 5 6 7 8 90

Clients (1)

Clients (2)

[seconds]

Clients (3)

Server

Workers (1)

Workers (2)

10

1 2 3 4 5 6 7 8 90

Clients (1)

Clients (2)

[seconds]

Clients (3)

Server

Workers (1)

Workers (2)

10
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4. [9 marks] Scheduling

(a) [3 marks] What is preemptive scheduling and for what reasons is it commonly used?

(b) [3 marks] Which scheduling algorithm would you suggest in order to minimize the 
maximum turnaround time for a task set of unknown characteristics (especially: you do 
not know the computation times). Give precise reasons.

 

(c) [3 marks] If you know the exact computation times of all tasks in a task set, would you 
change to a different scheduling algorithm in question (b) (while still minimizing the 
maximum turnaround time)? If so: to which other scheduling algorithm? Give precise 
reasons. 
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5. [8 marks] Data Parallelism

Write a program to implement the discrete cross-correlation function (as a discrete ar-
ray) between two cyclic, discrete functions (which are themselves represented by dis-
crete arrays) which optimizes for performance on an 8-core CPU with vector process-
ing units (processing 8 16-bit integer numbers per vector operation):

_ ,Cross Correlation A B A Bk i i k
i

$= +^ ^h h/

Sequentially such a function could be implemented like this:

   subtype Input_Range  is Integer range -(2**15) .. +(2**15 - 1); 
   subtype Output_Range is Integer range -(2**31) .. +(2**31 - 1);

   type Samples is mod 2**16; 

   type Input_Function  is array (Samples) of Input_Range;
   type Output_Function is array (Samples) of Output_Range;

   function Cross_Correlation (A, B : Input_Function) return Output_Function is

      CC : Output_Function := (others => 0);

   begin
      for k in Samples loop
         for i in Samples loop
            CC (k) := CC (k) + A (i) * B (i + k);
         end loop;
      end loop;
      return CC;
   end Cross_Correlation;

Use any programming language of your choice (including pseudocode). State what you 
assume about your compiler.
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6. [29 marks] Distributed Systems & Architectures

(a) [8 marks] Transactions

(i) [3 marks] Transactions are said to fulfil the ACID properties. One of those proper-
ties is often not strictly followed, when the overall performance of a system is impor-
tant. Which property would that be and why does its violation allow for a potentially 
higher performing system?

(ii) [5 marks] Executing transactions concurrently, does require some analysis of their 
potential interferences. Suggest at least one way how one can guarantee that the con-
current execution of transactions will not leave a system in an inconsistent state. Give 
precise reasons for your answer.
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(b) [6 marks] Enumerate and describe the OSI network layers which need to be imple-
mented in a network router.

(c) [3 marks] Explain why it is practically impossible to record a global snapshot of most 
distributed system at a specific global time. Give precise reasons.

(d) [4 marks] What kind of global snapshot is practically achievable for most distributed 
systems? Explain briefly how you can acquire such a snapshot.
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(e) [8 marks] Write a program in any programming language of your choice (including 
pseudo code) which implements distributed mutual exclusion in an effective and ef-
ficient way.
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